2024 Water Quality Report

City of Garden Grove Garden Grove Water Services Division

This report reflects water quality testing conducted during 2023.

Your 2024 Water Quality Report

Since 1990, California public water utilities have been providing an annual Water Quality Report to their customers. This year's report covers calendar year 2023 drinking water quality testing and reporting.

The City of Garden Grove Water Services Division (City) vigilantly safeguards its water supply and, as in years past, the water delivered to your home meets the quality standards required by federal and state regulatory agencies. The U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water

(DDW) are the agencies responsible for establishing and enforcing drinking water quality standards. In some cases, the City goes beyond what is required by testing for unregulated chemicals that may have known health risks but do not have drinking water standards. For example, the Orange County Water District (OCWD), which manages the groundwater basin, and the Metropolitan Water District of Southern California (MWDSC), which

Your Water: Always Available, Always Assured

Turn the tap and the water flows, as if by magic. Or so it seems. The reality is considerably different, however. Delivering high-quality drinking water to our customers is a scientific and engineering feat that requires considerable effort and talent to ensure the water is always there, always safe to drink.

Because tap water is highly regulated by state and federal laws, water treatment and distribution operators must be licensed and are required to complete on-the-job training and technical education before becoming a state certified operator.

Our licensed water professionals have an understanding of a wide range of subjects, including mathematics, biology, chemistry, physics, and engineering. Some of the tasks they complete on a regular basis include:

- Monitoring and inspecting machinery, meters, gauges, and operating conditions;
- Conducting tests and inspections on water and evaluating the results;
- Documenting and reporting test results and system operations to regulatory agencies; and
- Serving our community through customer support, education, and outreach.

So, the next time you turn on your faucet, think of the skilled professionals who stand behind every drop.

supplies imported treated surface water to the City test for unregulated chemicals in our water supply. Unregulated chemical monitoring helps USEPA and DDW determine where certain chemicals occur and whether new standards need to be established for those chemicals to protect public health.

Through drinking water quality testing programs carried out by OCWD for groundwater, MWDSC for treated surface water and the City for the water distribution system, your drinking water is constantly monitored from source to tap for regulated and unregulated constituents. The state allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Some of our data, though representative, are more than one year old.

This report contains important information about your drinking water. Translate it, or speak with someone who understands it.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Báo cáo này chứa thông tin quan trọng về nước uống của quý vị. Hãy dịch báo cáo, hoặc nói chuyện với một người hiểu báo cáo này.

본 보고는 귀하의 식수에 관한 중요한 정보를 가지고 있습니다. 번역, 또는 이 보고를 이해하는 사람에게 물어보십시오.

The Quality of Your Water is Our Primary Concern

Sources of Supply

Your drinking water is a blend of mostly groundwater from 12 wells in the Orange County groundwater basin and also surface water imported by MWDSC. MWDSC's imported water sources are a blend of State Water Project water from Northern California and water

from the Colorado River Aqueduct. Your groundwater comes from a natural underground reservoir managed by the Orange County Water District (OCWD) that stretches from the Prado Dam and fans across the northwestern portion of Orange County, excluding the communities of Brea and La Habra, and stretching as far south as the El Toro 'Y.'

Last year, as in years past, your tap water met all USEPA and state drinking water health standards. The City vigilantly safeguards its water supplies and once again, we are proud to report that our system has never violated a maximum contaminant level (MCL) or any other water quality standard. This brochure is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to federal and state standards.

Basic Information About Drinking Water Contaminants

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of land or through the layers of the ground it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animal and human activity.

Contaminants that may be present in source water include:

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining and farming.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production or mining activities.
- Organic chemical contaminants,

including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

In order to ensure that tap water is safe to drink, USEPA and the

DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contami-

nants in bottled water that must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791.

Learn More About Your Water's Quality

For information about this report, or your water quality in general, please contact the Water Quality Staff at (714) 741-5395.

Public City Council meetings are held on the second and fourth

Tuesdays of each month at 6:30 p.m. in the Council Chambers at the Community Meeting Center, 11300 Stanford Avenue, Garden Grove, California 92840.

You may also contact our City Clerk's Office,

Garden Grove City Hall, 11222 Acacia Parkway, Garden Grove, California 92840 or call (714) 741-5040 for information about Garden Grove City Council meetings. Please feel free to participate in these meetings.

For more information about the health effects of the contaminants listed in the following tables, you may call the USEPA hotline at (800) 426-4791.

About Lead in Tap Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

The City is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline, (800) 426-4791, or at: www.epa.gov/safewater/lead

Fluoride has been added to U.S. drinking water supplies since 1945. Of the 50 largest cities in the U.S., 43 fluoridate their drinking water.

In December 2007, MWDSC joined a majority of the nation's public water suppliers in adding fluoride to drinking water in order to prevent tooth decay. MWDSC was in compliance with all provisions of the State's fluoridation system requirements. Our local water is not supplemented with fluoride. Fluoride levels in drinking water are limited under California state regulations at a maximum dosage of 2 parts per million.

Immunocompromised People

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer who are undergoing chemo-therapy, persons who have had organ transplants, people with HIV/AIDS or other immune system

disorders, some elderly persons, and infants can be particularly at risk to infection. These people should seek advice about drinking water from their health care providers.

Cryptosporidium

Cryptosporidium is a microscopic organism that, when ingested, can cause diarrhea, fever, and other gastrointestinal symptoms. The organism comes from animal and/or human wastes and may be in surface water. MWDSC tested its source water and treated surface water for *Cryptosporidium* in 2023, but did not detect it. If it ever is detected, *Cryptosporidium* is eliminated by an effective treatment combination including sedimentation, filtration, and disinfection.

The USEPA and the federal Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by *Crypto-sporidium* and other microbial contaminants are available from USEPA's Safe Drinking Water Hotline at (800) 426-4791, or visit them on the web at: www.epa.gov/safewater.

PFAS

PFAS are a group of man-made chemicals that may pose a hazard to health. They have been widely used in a variety of products and are resistant to heat, water, oils and stains.

The City monitors PFAS levels in our supply wells per the latest State guidelines. The City is proud to announce that four treatment plants for affected wells have been constructed and are currently in operation.

Additional information regarding PFAS is available on the California Water Board's Division of Drinking Water website at www.waterboards.ca.gov/pfas/.

2023 Metropolitan Water District of Southern California Treated Surface Water

		PHG	Average	Range of	MCL	Typical Source
Constituent	MCL	(MCLG)	Amount	Detections	Violation?	of Constituent
Radiologicals – Tested in 2023						
Gross Alpha Particle Activity (pCi/L)	15	(0)	ND	ND – 5	No	Erosion of Natural Deposits
Gross Beta Particle Activity (pCi/L)	50	(0)	ND	ND - 6	No	Decay of Natural and Man-made Deposits
Uranium (pCi/L)	20	0.43	1	ND - 3	No	Erosion of Natural Deposits
Inorganic Chemicals – Tested ir	n 2023					
Aluminum (ppm)	1	0.6	0.105	ND - 0.07	No	Treatment Process Residue, Natural Deposits
Bromate (ppb)	10	0.1	ND	ND - 6.3	No	Byproduct of Drinking Water Ozonation
Fluoride (ppm)	2	1	0.7	0.6 - 0.8	No	Water Additive for Dental Health
Nitrate (as Nitrogen) (ppm)	10	10	0.7	0.7	No	Fertilizers, Septic Tanks
Secondary Standards* – Testec	d in 2023					
Aluminum (ppb)	200*	600	105	ND - 70	No	Treatment Process Residue, Natural Deposits
Chloride (ppm)	500*	n/a	66	42 - 91	No	Runoff or Leaching from Natural Deposits
Color (color units)	15*	n/a	2	1 – 2	No	Naturally-occurring Organic Materials
Odor (threshold odor number)	3*	n/a	2	2	No	Naturally-occurring Organic Materials
Specific Conductance (µmho/cm)	1,600*	n/a	642	424 - 859	No	Substances that Form lons in Water
Sulfate (ppm)	500*	n/a	122	70 – 175	No	Runoff or Leaching from Natural Deposits
Fotal Dissolved Solids (ppm)	1,000*	n/a	394	253 - 534	No	Runoff or Leaching from Natural Deposits
Unregulated Chemicals – Teste	ed in 2023					
Alkalinity, total as CaCO ₃ (ppm)	Not Regulated	n/a	84	66 - 102	n/a	Runoff or Leaching from Natural Deposits
Boron (ppm)	NL = 1	n/a	0.13	0.13	n/a	Runoff or Leaching from Natural Deposits
Calcium (ppm)	Not Regulated	n/a	38	25 – 52	n/a	Runoff or Leaching from Natural Deposits
Hardness, total as CaCO ₃ (ppm)	Not Regulated	n/a	160	99 - 220	n/a	Runoff or Leaching from Natural Deposits
Hardness, total (grains/gallon)	Not Regulated	n/a	9.4	5.8 – 13	n/a	Runoff or Leaching from Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	15	9.6 - 21	n/a	Runoff or Leaching from Natural Deposits
oH (pH units)	Not Regulated	n/a	8.5	8.5	n/a	Hydrogen Ion Concentration
Potassium (ppm)	Not Regulated	n/a	3.4	2.6 - 4.3	n/a	Runoff or Leaching from Natural Deposits
Sodium (ppm)	Not Regulated	n/a	69	47 – 91	n/a	Runoff or Leaching from Natural Deposits
Total Organic Carbon (ppm)	TT	n/a	2.4	2.1 - 3	n/a	Various Natural and Man-made Sources

ppb = parts per billion; ppm = parts per million; pCi/L = picoCuries per liter; µmho/cm = micromhos per centimeter; ND = not detected; TT = treatment technique; n/a = not applicable; MCL = Maximum Contaminant Level; (MCLG)= federal MCL Goal; PHG = California Public Health Goal; NL = Notification Level *Chemical is regulated by a secondary standard.

Turbidity – combined filter effluent Metropolitan Water District Diemer Filtration Plant	Treatment Technique	Turbidity Measurements	TT Violation?	Typical Source of Constituent	
1) Highest single turbidity measurement (NTU)	0.3	0.08	No	Soil Runoff	
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Soil Runoff	

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. NTU = nephelometric turbidity units

Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT).

A treatment technique is a required process intended to reduce the level of chemicals in drinking water that are difficult and sometimes impossible to measure directly.

Unregu	lated	Che	micals	Rea	uiring	Monit	oring

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Lithium (ppb)	n/a	n/a	10	ND – 35	2023

Chart Legend

What are Water Quality Standards?

Drinking water standards established by USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The charts in this report show the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The charts in this report include three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- parts per million (ppm) or milligrams per liter (mg/L)
- parts per billion (ppb) or micrograms per liter (μg/L)
- parts per trillion (ppt) or nanograms per liter (ng/L)

2023 City of Garden Grove Groundwater Quality Range of MCL **Most Recent Typical Source** Average Constituent MCL PHG Amount Violation? of Constituent Detections Sampling Date Radiologicals Gross Alpha Particle Activity (pCi/L) 15 (0)ND ND - 4.8 No 2023 Erosion of Natural Deposits Uranium (pCi/L) 20 0.43 8.2 5.3 - 10 No 2023 Erosion of Natural Deposits **Inorganic Chemicals** 10 0.004 ND ND - 2.8 No 2023 Erosion of Natural Deposits Arsenic (ppb) 1 2 2023 Barium (ppm) ND ND - 0.13 No Erosion of Natural Deposits Fluoride (ppm) 2 1 0.45 0.4-0.51 No 2023 Erosion of Natural Deposits 10 10 33 07 - 46No 2023 Fertilizers, Septic Tanks Nitrate (ppm as N) 10 10 2023 Nitrate+Nitrite (ppm as N) 3.3 0.7 - 4.6No Fertilizers, Septic Tanks Perchlorate (ppb) 6 1 ND ND - 3.2 No 2023 Industrial Discharge Secondary Standards* 2023 Chloride (ppm) 500* 70 28 - 116No Erosion of Natural Deposits n/a 300* 14 ND - 182 No 2023 Erosion of Natural Deposits Iron (ppb) n/a Manganese (ppb) 50* 3 ND – 37 No 2023 Erosion of Natural Deposits n/a 3* Odor (threshold odor number) n/a ND ND - 1 No 2023 Erosion of Natural Deposits Specific Conductance (µmho/cm) 1,600* n/a 808 544 - 1,040 No 2023 Erosion of Natural Deposits 111 61 - 144No 2023 Sulfate (ppm) 500* Erosion of Natural Deposits n/a Total Dissolved Solids (ppm) 1,000* 505 314 - 662 No 2023 Erosion of Natural Deposits n/a Turbidity (NTU) 5* n/a 0.1 ND - 0.9 No 2023 Erosion of Natural Deposits **Unregulated Constituents** Alkalinity, total (ppm as CaCO₃) Not Regulated n/a 193 173 - 218n/a 2023 Erosion of Natural Deposits Boron (ppm) NL = 1n/a 0.1 ND - 0.25 n/a 2023 Erosion of Natural Deposits Bromide (ppm) (1) Not Regulated 0.22 0.1 - 0.5 2019 Industrial Discharge n/a n/a Calcium (ppm) Not Regulated 100 63 - 117 2023 Erosion of Natural Deposits n/a n/a Chromium, Hexavalent (ppb) Not Regulated 0.02 1.3 0.27 - 1.9 n/a 2023 Erosion of Natural Deposits; Industrial Discharge 12 - 22 2023 Erosion of Natural Deposits Hardness, total (grains/gal) Not Regulated 18 n/a n/a Not Regulated Erosion of Natural Deposits Hardness, total (ppm as CaCO₃) n/a 313 202 - 374 n/a 2023 Lithium (ppb) (2) Not Regulated n/a ND ND - 11 n/a 2023 Various Natural & Man-made Sources SMCL = 50ND ND - 0.72023 Erosion of Natural Deposits Manganese (ppb) (1) n/a n/a Magnesium (ppm) Not Regulated 17 11 - 21 2023 Erosion of Natural Deposits n/a n/a Not Regulated ND ND - 12 2023 Industrial Discharge Perfluorobutanoic acid (ppt) n/a n/a Perfluorobutanoic acid (ppt) (2) Not Regulated n/a ND ND - 8.8 n/a 2023 Industrial Discharge Perfluoro butane sulfonic acid (ppt) NL = 500n/a ND ND - 4.8 n/a 2023 Industrial Discharge ND 2023 Perfluoroheptanoic acid (ppt) Not Regulated ND - 3.3 Industrial Discharge n/a n/a Perfluoro hexane sulfonic acid (ppt) NL = 36 ND - 18 2023 Industrial Discharge n/a n/a Perfluoro hexane sulfonic acid (ppt) (2) Industrial Discharge NL = 3ND ND - 8.9 2023 n/a n/a Perfluorohexanoic acid (ppt) Not Regulated n/a ND ND - 6.2n/a 2023 Industrial Discharge Perfluorohexanoic acid (ppt) (2) Not Regulated n/a ND ND - 4n/a 2023 Industrial Discharge NL = 6.599 ND - 402023 Perfluoro octane sulfonic acid (ppt) Industrial Discharge n/a n/a Perfluoro octane sulfonic acid (ppt) (2) NL = 6.5ND ND - 11.9 2023 Industrial Discharge n/a n/a NL = 5.14.4 ND - 16 2023 Perfluoro octanoic acid (ppt) n/a n/a Industrial Discharge Perfluoro octanoic acid (ppt) (2) NL = 5.1ND ND - 5.6 n/a 2023 Industrial Discharge n/a Perfluoropentanoic acid (ppt) Not Regulated n/a 3 ND - 9.5 n/a 2023 Industrial Discharge Perfluoropentanoic acid (ppt) (2) Not Regulated ND ND - 8.2 2023 Industrial Discharge n/a n/a pH (pH units) Not Regulated n/a 7.9 7.7 - 8 n/a 2023 Acidity, hydrogen ions Potassium (ppm) Not Regulated n/a 3.8 2.6 - 5.2 n/a 2023 Erosion of Natural Deposits Total Organic Carbon (Unfiltered)(ppm) (1) 0.3 0.19 - 0.48 2019 Various Natural & Man-made Sources Not Regulated n/a n/a 51 2023 Erosion of Natural Deposits Sodium (ppm) Not Regulated n/a 36 - 89 n/a ND - 3.8 Vanadium, Total (ppb) 1.7 2023 Erosion of Natural Deposits; NL = 50n/a n/a

ppb = parts-per-billion; ppm = parts-per-million; ppt = parts per trillion; pCi/L = picoCuries per liter; NTU = nephelometric turbidity units; ND = not detected; NL = Notification Level; n/a = not applicable; MCL = Maximum Contaminant Level; PHG = California Public Health Goal; µmho/cm = micromho per centimeter

*Contaminant is regulated by a secondary standard to maintain aesthetic gualities (taste, odor, color)

(1) Constituent is part of the Fourth Unregulated Contaminant Monitoring Rule (UCMR 4) (2) Constituent is part of the Fifth Unregulated Contaminant Monitoring Rule (UCMR 5)

Industrial Discharge

2023 City of Garden Grove Distribution System Water Quality							
Disinfection Byproducts	MCL (MRDL/MRDLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Constituent		
Total Trihalomethanes (ppb)	80	9	ND – 0.8	No	Byproducts of Chlorine Disinfection		
Haloacetic Acids (ppb)	60	8	ND – 28	No	Byproducts of Chlorine Disinfection		
Chlorine Residual (ppm)	(4 / 4)	1.1	0.2 - 2.6	No	Disinfectant Added for Treatment		
Aesthetic Quality							
Color (color units)	15*	1	1	No	Erosion of Natural Deposits		
Odor (threshold odor number)	3*	1	1	No	Erosion of Natural Deposits		
Turbidity (NTU)	5*	0.1	ND - 0.18	No	Erosion of Natural Deposits		

Eight locations in the distribution system are tested quarterly for total trihalomethanes and haloacetic acids; thirty-three locations are tested each month for color, odor and turbidity.

MRDL = Maximum Residual Disinfectant Level; MRDLG = Maximum Residual Disinfectant Level Goal *Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color).

Lead and Copper Action Levels at Residential Taps

	Action Level (AL)	Public Health Goal	90 th Percentile Value	Sites Exceeding AL / Number of Sites	AL Violation?	Typical Source of Constituent
Lead (ppb)	15	0.2	ND<5	0 / 50	No	Corrosion of Household Plumbing
Copper (ppm)	1.3	0.3	0.11	0 / 50	No	Corrosion of Household Plumbing

Every three years, at least 50 residences are tested for lead and copper at-the-tap. The most recent set of samples was collected in 2022.

Lead was detected above the reporting level in 1 sample, but did not exceed the lead Action Level. Cooper was detected above the reporting level in 32 samples, but none of the samples exceeded the conner Action Level

Copper was detected above one reporting reventing 25 samples, but note or the samples exceeded intercorper Action Level is the concentration of a contaminant which, if exceeded, triagers treatment or other requirements that a water system must follow

Unregulated Chemicals Requiring Monitoring in the Distribution System

Constituent	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Dibromoacetic Acid (ppb)	n/a	n/a	0.64	0.4 - 1.2	2019

Source Water Assessments

Imported (MWDSC) Water Assessment

Every five years, MWDSC is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters.

The most recent surveys for MWDSC's source waters are the

Colorado River Watershed Sanitary Survey - 2020 Update, and the State Water Project Watershed Sanitary Survey -2021 Update.

Water from the Colorado River is considered to be most vulnerable to

contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater.

USEPA also requires MWDSC to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWDSC completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWDSC at (800) CALL-MWD (225-5693).

Groundwater Assessment

An assessment of the drinking water sources for the City was completed in December 2002. The groundwater sources are considered most vulnerable to the following activities associated with contami-

nants detected in the water supply: known contaminant plumes, historic agricultural activities and application of fertilizers, and parks. The groundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: confirmed leaking underground storage tanks, dry cleaners, gas stations, and photo processing/printing.

A copy of the complete assessment is available at State Water Resources Control Board, Division of Drinking Water, 2 MacArthur Place, Suite 150, Santa Ana, California 92707.

You may request a summary of the assessment by contacting the City at (714) 741-5395.